CycleGAN-Based SAR-Optical Image Fusion for Target Recognition

Author:

Sun Yuchuang12ORCID,Yan Kaijia12ORCID,Li Wangzhe12

Affiliation:

1. National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The efficiency and accuracy of target recognition in synthetic aperture radar (SAR) imagery have seen significant progress lately, stemming from the encouraging advancements of automatic target recognition (ATR) technology based on deep learning. However, the development of a deep learning-based SAR ATR algorithm still faces two critical challenges: the difficulty of feature extraction caused by the unique nature of SAR imagery and the scarcity of datasets caused by the high acquisition cost. Due to its desirable image nature and extremely low acquisition cost, the simulated optical target imagery obtained through computer simulation is considered a valuable complement to SAR imagery. In this study, a CycleGAN-based SAR and simulated optical image fusion network (SOIF-CycleGAN) is designed and demonstrated to mitigate the adverse effects of both challenges simultaneously through SAR-optical image bidirectional translation. SAR-to-optical (S2O) image translation produces artificial optical images that are high-quality and rich in details, which are used as supplementary information for SAR images to assist ATR. Conversely, optical-to-SAR (O2S) image translation generates pattern-rich artificial SAR images and provides additional training data for SAR ATR algorithms. Meanwhile, a new dataset of SAR-optical image pairs containing eight different types of aircraft has been created for training and testing SOIF-CycleGAN. By combining image-quality assessment (IQA) methods and human vision, the evaluation verified that the proposed network possesses exceptional bidirectional translation capability. Finally, the results of the S2O and O2S image translations are simultaneously integrated into a SAR ATR network, resulting in an overall accuracy improvement of 6.33%. This demonstrates the effectiveness of SAR-optical image fusion in enhancing the performance of SAR ATR.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3