Comparative Evaluation of PCR-Based, LAMP and RPA-CRISPR/Cas12a Assays for the Rapid Detection of Diaporthe aspalathi

Author:

Dong Jiali12,Feng Wanzhen13,Lin Mingze13,Chen Shuzhe13,Liu Xiaozhen13,Wang Xiaodan2,Chen Qinghe13ORCID

Affiliation:

1. School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China

2. Sanya Institute of China Agricultural University, Sanya 572025, China

3. Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China

Abstract

Southern stem canker (SSC) of soybean, attributable to the fungal pathogen Diaporthe aspalathi, results in considerable losses of soybean in the field and has damaged production in several of the main soybean-producing countries worldwide. Early and precise identification of the causal pathogen is imperative for effective disease management. In this study, we performed an RPA-CRISPR/Cas12a, as well as LAMP, PCR and real-time PCR assays to verify and compare their sensitivity, specificity and simplicity and the practicality of the reactions. We screened crRNAs targeting a specific single-copy gene, and optimized the reagent concentrations, incubation temperatures and times for the conventional PCR, real-time PCR, LAMP, RPA and Cas12a cleavage stages for the detection of D. aspalathi. In comparison with the PCR-based assays, two thermostatic detection technologies, LAMP and RPA-CRISPR/Cas12a, led to higher specificity and sensitivity. The sensitivity of the LAMP assay could reach 0.01 ng μL−1 genomic DNA, and was 10 times more sensitive than real-time PCR (0.1 ng μL−1) and 100 times more sensitive than conventional PCR assay (1.0 ng μL−1); the reaction was completed within 1 h. The sensitivity of the RPA-CRISPR/Cas12a assay reached 0.1 ng μL−1 genomic DNA, and was 10 times more sensitive than conventional PCR (1.0 ng μL−1), with a 30 min reaction time. Furthermore, the feasibility of the two thermostatic methods was validated using infected soybean leaf and seeding samples. The rapid, visual one-pot detection assay developed could be operated by non-expert personnel without specialized equipment. This study provides a valuable diagnostic platform for the on-site detection of SSC or for use in resource-limited areas.

Funder

Hainan Province Science and Technology Special Fund

National Key Research and Development Program of China

Scientific Research Foundation of Hainan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3