Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid

Author:

Hakam Youness12ORCID,Gaga Ahmed1,Tabaa Mohamed2,Elhadadi Benachir1

Affiliation:

1. Research Laboratory of Physics and Engineers Sciences (LRPSI), Research Team in Embedded Systems, Engineering, Automation, Signal, Telecommunications and Intelligent Materials (ISASTM), Polydisciplinary Faculty (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23040, Morocco

2. Multidisciplinary Laboratory of Research and Innovation (LPRI), Moroccan School of Engineering Sciences (EMSI), Casablanca 20250, Morocco

Abstract

This paper presents a groundbreaking control strategy for a bidirectional battery charger that allows power to be injected into the smart grid while simultaneously compensating for the grid’s reactive power using an electric vehicle battery. An artificial neural network (ANN) controller is utilized for precise design to ensure optimal performance with minimal error. The ANN technique is applied to generate sinusoidal pulse width modulation (SPWM) for a bidirectional AC–DC inverter, with the entire algorithm simulated in MATLAB Simulink.The core innovation of this study is the creation of the ANN algorithm, which supports grid compensation using electric vehicle batteries, an approach termed “vehicle-for-grid”. Additionally, the paper details the PCB circuit design of the system controlled by the DSP F28379D board, which was tested on a three-phase motor. The total harmonic distortion (THD) of the proposed ANN algorithm is approximately 1.85%, compared to the MPC algorithm’s THD of about 2.85%. This indicates that the proposed algorithm is more effective in terms of the quality of the power injected into the grid. Furthermore, it demonstrates effective grid compensation, with the reactive power effectively neutralized to 0KVAR in the vehicle-for-grid mode.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3