Expression, Characterisation, Homology Modelling and Molecular Docking of a Novel M17 Family Leucyl-Aminopeptidase from Bacillus cereus CZ

Author:

Liu Jie1,Cui Tangbing1ORCID

Affiliation:

1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

Leucyl-aminopeptidase (LAP), an important metallopeptidase, hydrolyses amino acid residues from the N-terminus of polypeptides and proteins, acting preferentially on the peptide bond formed by N-terminus leucine. A new leucyl-aminopeptidase was found in Bacillus cereus CZ. Its gene (bclap) contained a 1485 bp ORF encoding 494 amino acids with a molecular weight of 54 kDa. The bcLAP protein was successfully expressed in E. coli BL21(DE3). Optimal activity is obtained at pH 9.0 and 58 °C. The bcLAP displays a moderate thermostability and an alkaline pH adaptation range. Enzymatic activity is dramatically enhanced by Ni2+. EDTA significantly inhibits the enzymatic activity, and bestatin and SDS also show strong inhibition. The three-dimensional model of bcLAP monomer and homohexamer is simulated byPHYRE2 server and SWISS-MODEL server. The docking of bestatin, Leu-Trp, Asp-Trp and Ala-Ala-Gly to bcLAP is performed using AutoDock4.2.5, respectively. Molecular docking results show that the residues Lys260, Asp265, Lys272, Asp283, Asp342, Glu344, Arg346, Gly372 and His437 are involved in the hydrogen bonding with the ligands and zinc ions. There may be two nucleophilic catalytic mechanisms in bcLAP, one involving His 437 or Arg346 and the other involving His437 and Arg346. The bcLAP can hydrolyse the peptide bonds in Leu-Trp, Asp-Trp and Ala-Ala-Gly.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference61 articles.

1. Human aminopeptidases: A review of the literature;Sanderink;Clin. Chem. Lab. Med.,1998

2. Aminopeptidases: Structure and function;Taylor;FASEB J.,1993

3. The peptidase system of aspergillus parasiticus;Johnson;J. Biol. Chem.,1935

4. Bacterial aminopeptidases: Properties and functions;Gonzales;FEMS Microbiol. Rev.,1996

5. Rawlings, N.D., and Barrett, A.J. (2004). Handbook of Proteolytic Enzymes, Elsevier/Academic Press. [2nd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3