In Vitro Models of Cell Senescence: A Systematic Review on Musculoskeletal Tissues and Cells

Author:

Veronesi Francesca1ORCID,Contartese Deyanira1ORCID,Di Sarno Laura1,Borsari Veronica1ORCID,Fini Milena2,Giavaresi Gianluca1ORCID

Affiliation:

1. Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy

2. Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy

Abstract

Ageing is an irreversible and inevitable biological process and a significant risk factor for the development of various diseases, also affecting the musculoskeletal system, resulting from the accumulation of cell senescence. The aim of this systematic review was to collect the in vitro studies conducted over the past decade in which cell senescence was induced through various methods, with the purpose of evaluating the molecular and cellular mechanisms underlying senescence and to identify treatments capable of delaying senescence. Through three electronic databases, 22 in vitro studies were identified and included in this systematic review. Disc, cartilage, or muscle cells or tissues and mesenchymal stem cells were employed to set-up in vitro models of senescence. The most common technique used to induce cell senescence was the addition to the culture medium of tumor necrosis factor (TNF)α and/or interleukin (IL)1β, followed by irradiation, compression, hydrogen peroxide (H2O2), microgravity, in vitro expansion up to passage 10, and cells harvested from damaged areas of explants. Few studies evaluated possible treatments to anti-senescence effects. The included studies used in vitro models of senescence in musculoskeletal tissues, providing powerful tools to evaluate age-related changes and pathologies, also contributing to the development of new therapeutic approaches.

Funder

Italian Ministry of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3