Senescence Model Theories from In Vitro through In Vivo

Author:

Alpay Merve1

Affiliation:

1. DUZCE UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF BIOCHEMISTRY

Abstract

The theoretical equivalence of expressing that a cell is aging to its inability to perform the assumed function is not exactly accurate, it involves a gradual decrease in cell aging mechanisms. Factors such as genetics, lifestyle, and environmental effects maintain the biological change of the cell. The concept of cellular senescence was initially introduced by Hayflick and his collaborators in 1961 when they noticed that human diploid fibroblasts cultured in vitro could undergo only a limited number of cell divisions before their ability to proliferate was permanently halted. This phenomenon, known as the 'Hayflick limit', was subsequently linked to the gradual shortening of telomeres with each successive round of cell division. Throughout the aging process, senescent cells collect in different tissues. Their involvement in age-related health issues such as neurodegenerative disorders, heart problems, cancer, kidney-related changes, chronic lung diseases, and osteoarthritis suggests that targeting senescent cells therapeutically could be promising across various health conditions. This review will discuss the available data on which cell types may undergo aging based on biological aging and how these processes may impact age-associated tissue-specific pathologies. Additionally, the markers used to characterize the physiological transition of aging cells from in vitro to in vivo settings will be evaluated. The discussed data may serve as a significant starting point for an expanded definition of the molecular and functional characteristics of aging cells in different organs, thus supporting the development and enhancement of targeting strategies in vivo.

Publisher

Duzce Medical Journal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3