The Antioxidant and Immunomodulatory Potential of Coccoloba alnifolia Leaf Extracts

Author:

de Melo Luciana Fentanes Moura123,Barbosa Jefferson da Silva24ORCID,Cordeiro Maria Lúcia da Silva123,Aquino-Martins Verônica Giuliani de Queiroz123ORCID,Silva Ariana Pereira da12,Paiva Weslley de Souza25ORCID,Silveira Elielson Rodrigo6ORCID,dos Santos Déborah Yara A. Cursino6ORCID,Rocha Hugo Alexandre Oliveira23ORCID,Scortecci Kátia Castanho13

Affiliation:

1. Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil

2. Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil

3. Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil

4. Federal Institut of Education, Science and Technology of Rio Grande do Norte (IFRN), São Gonçalo do Amarante 59291-727, RN, Brazil

5. Northeast Biotecnology Network (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil

6. Phytochemistry Laboratory, Botany Departament, Bioscience Institut, São Paulo University, São Paulo 05508-070, SP, Brazil

Abstract

Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 μg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3