Canopy Composition and Spatial Configuration Influences Beta Diversity in Temperate Regrowth Forests of Southeastern Australia

Author:

Singh Anu12,Wagner Benjamin2ORCID,Kasel Sabine2ORCID,Baker Patrick J.2,Nitschke Craig R.2ORCID

Affiliation:

1. Bush Heritage Australia, Level 1, 395 Collins Street, Melbourne, VIC 3000, Australia

2. School of Ecosystem and Forest Sciences, The University of Melbourne, Burnley, VIC 3121, Australia

Abstract

Structural features of the overstorey in managed and unmanaged forests can significantly influence plant community composition. Native Acacia species are common in temperate eucalypt forests in southeastern Australia. In these forests, intense disturbances, such as logging and wildfire, lead to high densities of regenerating trees, shrubs, and herbs. The tree layer is dominated by Acacia and Eucalyptus, that compete intensely for resources in the first decades after stand establishment. The relative abundance and size of Acacia and Eucalyptus varies widely due to stochastic factors such as dispersal, microsite variability, and weather and climatic conditions. This variability may influence the structure and composition of the herbaceous and shrub species. In the temperate forests of southeastern Australia, understorey plant diversity is assumed to be influenced by Acacia species density, rather than Eucalyptus density. To quantify the influence of Acacia and Eucalyptus density on plant community composition, we used remote sensing and machine learning methods to map canopy composition and then compare it to understorey composition. We combined unoccupied aerial vehicle (UAV or drone) imagery, supervised image classifications, and ground survey data of plant composition from post-logging regrowth forests in the Central Highlands of southeastern Australia. We found that aggregation and patch metrics of Eucalyptus and Acacia were strongly associated with understorey plant beta diversity. Increasing aggregation of Acacia and the number of Acacia patches had a significant negative effect on plant beta diversity, while the number of Eucalyptus patches had a positive influence. Our research demonstrates how accessible UAV remote sensing can be used to quantify variability in plant biodiversity in regrowth forests. This can help forest managers map patterns of plant diversity at the stand-scale and beyond to guide management activities across forested landscapes.

Funder

Australian Research Council

The University of Melbourne

Victorian government’s Department of Energy, Environment and Climate Action

Eucalypt Australia

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference87 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3