Adaptive Multi-Scale Fusion Blind Deblurred Generative Adversarial Network Method for Sharpening Image Data

Author:

Zhu Baoyu123,Lv Qunbo123,Tan Zheng13

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China

2. School of Optoelectronics, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China

3. Department of Key Laboratory of Computational Optical Imagine Technology, CAS, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China

Abstract

Drone and aerial remote sensing images are widely used, but their imaging environment is complex and prone to image blurring. Existing CNN deblurring algorithms usually use multi-scale fusion to extract features in order to make full use of aerial remote sensing blurred image information, but images with different degrees of blurring use the same weights, leading to increasing errors in the feature fusion process layer by layer. Based on the physical properties of image blurring, this paper proposes an adaptive multi-scale fusion blind deblurred generative adversarial network (AMD-GAN), which innovatively applies the degree of image blurring to guide the adjustment of the weights of multi-scale fusion, effectively suppressing the errors in the multi-scale fusion process and enhancing the interpretability of the feature layer. The research work in this paper reveals the necessity and effectiveness of a priori information on image blurring levels in image deblurring tasks. By studying and exploring the image blurring levels, the network model focuses more on the basic physical features of image blurring. Meanwhile, this paper proposes an image blurring degree description model, which can effectively represent the blurring degree of aerial remote sensing images. The comparison experiments show that the algorithm in this paper can effectively recover images with different degrees of blur, obtain high-quality images with clear texture details, outperform the comparison algorithm in both qualitative and quantitative evaluation, and can effectively improve the object detection performance of blurred aerial remote sensing images. Moreover, the average PSNR of this paper’s algorithm tested on the publicly available dataset RealBlur-R reached 41.02 dB, surpassing the latest SOTA algorithm.

Funder

the Key Program Project of Science and Technology Innovation of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3