High-Resolution Profiling of Atmospheric Turbulence Using UAV Autopilot Data

Author:

Shelekhov Alexander1,Afanasiev Alexey2,Shelekhova Evgeniya1,Kobzev Alexey1ORCID,Tel’minov Alexey1,Molchunov Alexander1,Poplevina Olga1

Affiliation:

1. Institute of Monitoring of Climatic and Ecological Systems SB RAS, 10/3, Academichesky Ave, 634055 Tomsk, Russia

2. V.E. Zuev Institute of Atmospheric Optics SB RAS, 1, Academician Zuev Square, 634055 Tomsk, Russia

Abstract

The capabilities of hovering unmanned aerial vehicles (UAVs) in low-altitude sensing of atmospheric turbulence with high spatial resolution are studied experimentally. The vertical profile of atmospheric turbulence was measured at the Basic Experimental Observatory (Tomsk, Russian Federation) with three quadcopters hovering at altitudes of 4, 10, and 27 m in close proximity (~5 m) to anemometers installed on weather towers. The behavior of the longitudinal and lateral wind velocity components in the 0–10 Hz frequency band is analyzed. In addition, the obtained wind velocity components were smoothed over 1 min by the moving average method to describe long turbulent wind gusts. The discrepancy between the UAV and anemometer data is examined. It is found that after smoothing, the discrepancy does not exceed 0.5 m/s in 95% of cases. This accuracy is generally sufficient for measurements of the horizontal wind in the atmosphere. The spectral and correlation analysis of the UAV and anemometer measurements is carried out. The profiles of the longitudinal and lateral scales of turbulence determined from turbulence spectra and autocorrelation functions are studied based on the UAV and anemometer data.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3