A Motion-Aware Siamese Framework for Unmanned Aerial Vehicle Tracking

Author:

Sun Lifan12,Zhang Jinjin1,Yang Zhe3,Fan Bo1

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Longmen Laboratory, Luoyang 471023, China

3. Xiaomi Technology Co., Ltd., Beijing 100102, China

Abstract

In recent years, visual tracking has been employed in all walks of life. The Siamese trackers formulate the tracking problem as a template-matching process, and most of them can meet the real-time requirements, making them more suitable for UAV tracking. Because existing trackers can only use the first frame of a video sequence as a reference, the appearance of the tracked target will change when an occlusion, fast motion, or similar target appears, resulting in tracking drift. It is difficult to recover the tracking process once the drift phenomenon occurs. Therefore, we propose a motion-aware Siamese framework to assist Siamese trackers in detecting tracking drift over time. The base tracker first outputs the original tracking results, after which the drift detection module determines whether or not tracking drift occurs. Finally, the corresponding tracking recovery strategies are implemented. More stable and reliable tracking results can be obtained using the Kalman filter’s short-term prediction ability and more effective tracking recovery strategies to avoid tracking drift. We use the Siamese region proposal network (SiamRPN), a typical representative of an anchor-based algorithm, and Siamese classification and regression (SiamCAR), a typical representative of an anchor-free algorithm, as the base trackers to test the effectiveness of the proposed method. Experiments were carried out on three public datasets: UAV123, UAV20L, and UAVDT. The modified trackers (MaSiamRPN and MaSiamCAR) both outperformed the base tracker.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Natural Science Foundation of Henan Province, China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3