Enhancing Online UAV Multi-Object Tracking with Temporal Context and Spatial Topological Relationships

Author:

Xiao Changcheng1ORCID,Cao Qiong2,Zhong Yujie3,Lan Long4,Zhang Xiang45,Cai Huayue1,Luo Zhigang1

Affiliation:

1. School of Computer Science, National University of Defense Technology, Changsha 410073, China

2. JD Explore Academy, Beijing 102628, China

3. Meituan Inc., Beijing 100102, China

4. Institute for Quantum & State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China

5. Laboratory of Digitizing Software for Frontier Equipment, National University of Defense Technology, Changsha 410073, China

Abstract

Multi-object tracking in unmanned aerial vehicle (UAV) videos is a critical visual perception task with numerous applications. However, existing multi-object tracking methods, when directly applied to UAV scenarios, face significant challenges in maintaining robust tracking due to factors such as motion blur and small object sizes. Additionally, existing UAV methods tend to underutilize crucial information from the temporal and spatial dimensions. To address these issues, on the one hand, we propose a temporal feature aggregation module (TFAM), which effectively combines temporal contexts to obtain rich feature response maps in dynamic motion scenes to enhance the detection capability of the proposed tracker. On the other hand, we introduce a topology-integrated embedding module (TIEM) that captures the topological relationships between objects and their surrounding environment globally and sparsely, thereby integrating spatial layout information. The proposed TIEM significantly enhances the discriminative power of object embedding features, resulting in more precise data association. By integrating these two carefully designed modules into a one-stage online MOT system, we construct a robust UAV tracker. Compared to the baseline approach, the proposed model demonstrates significant improvements in MOTA on two UAV multi-object tracking benchmarks, namely VisDrone2019 and UAVDT. Specifically, the proposed model achieves a 2.2% improvement in MOTA on the VisDrone2019 benchmark and a 2.5% improvement on the UAVDT benchmark.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference63 articles.

1. Multiple object tracking: A literature review;Luo;Artif. Intell.,2021

2. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., and Schindler, K. (2016). MOT16: A benchmark for multi-object tracking. arXiv.

3. Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., and Leal-Taixé, L. (2020). Mot20: A benchmark for multi object tracking in crowded scenes. arXiv.

4. Motchallenge: A benchmark for single-camera multiple target tracking;Dendorfer;Int. J. Comput. Vis.,2021

5. Wang, F., Luo, L., and Zhu, E. (2021). MMM 2021: MultiMedia Modeling, Proceedings of the International Conference on Multimedia Modeling, Prague, Czech Republic, 22–24 June 2021, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3