UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System

Author:

Liang Han1ORCID,Lee Seong-Cheol1ORCID,Seo Suyoung1ORCID

Affiliation:

1. Department of Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Detecting damage in bridges can be an arduous task, fraught with challenges stemming from the limitations of the inspection environment and the considerable time and resources required for manual acquisition. Moreover, prevalent damage detection methods rely heavily on pixel-level segmentation, rendering it infeasible to classify and locate different damage types accurately. To address these issues, the present study proposes a novel fully automated concrete bridge damage detection system that harnesses the power of unmanned aerial vehicle (UAV) remote sensing technology. The proposed system employs a Swin Transformer-based backbone network, coupled with a multi-scale attention pyramid network featuring a lightweight residual global attention network (LRGA-Net), culminating in unprecedented breakthroughs in terms of speed and accuracy. Comparative analyses reveal that the proposed system outperforms commonly used target detection models, including the YOLOv5-L and YOLOX-L models. The proposed system’s robustness in visual inspection results in the real world reinforces its efficacy, ushering in a new paradigm for bridge inspection and maintenance. The study findings underscore the potential of UAV-based inspection as a means of bolstering the efficiency and accuracy of bridge damage detection, highlighting its pivotal role in ensuring the safety and longevity of vital infrastructure.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3