A Hybrid Method for Vibration-Based Bridge Damage Detection

Author:

Gonen SemihORCID,Erduran EmrahORCID

Abstract

Damage detection algorithms employing the conventional acceleration measurements and the associated modal features may underperform due to the limited number of sensors used in the monitoring and the smoothing effect of spline functions used to increase the spatial resolution. The effectiveness of such algorithms could be increased if a more accurate estimate of mode shapes were provided. This study presents a hybrid structural health monitoring method for vibration-based damage detection of bridge-type structures. The proposed method is based on the fusion of data from conventional accelerometers and computer vision-based measurements. The most commonly used mode shape-based damage measures, namely, the mode shape curvature method, the modal strain energy method, and the modal flexibility method, are used for damage detection. The accuracy of these parameters used together with the conventional sparse sensor setups and the proposed hybrid approach is investigated in numerical case studies, with damage scenarios simulated on a simply-supported bridge. The simulations involve measuring the acceleration response of the bridge to ambient vibrations and train crossings and then processing the data to determine the modal frequencies and mode shapes. The efficiency and accuracy of the proposed hybrid health monitoring methodology are demonstrated in case studies involving scenarios in which conventional acceleration measurements fail to detect and locate damage. The robustness of the proposed method against various levels of noise is shown as well. In the studies considered, damage as small as 10% decrease in flexural stiffness of the bridge and localized in less than 1% of the span-length of the bridge is reliably detected even with very high levels of measurement noise. Finally, a modified modal flexibility damage parameter is derived and used to alleviate the shortcomings of the modal flexibility damage parameter.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference66 articles.

1. Bridge damage detection based on vibration data: Past and new developments;Casas;Front. Built Environ.,2017

2. ASCE (2021). Report Card for America’s Infrastructure, American Society of Civil Engineers, ASCE. Technical Report.

3. (2021). Statistical Pocketbook 2021—EU Transport in Figures, Technical Report.

4. Bridge condition assessment by flexibility;Toksoy;Exp. Mech.,1994

5. Figueiredo, E., Park, G., Figueriras, J., Farrar, C., and Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons Using Standard Data Sets, Technical Report Report: LA-14393.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3