Scheduling Drones for Ship Emission Detection from Multiple Stations

Author:

Hu Zhi-Hua1ORCID,Liu Tian-Ci1,Tian Xi-Dan1

Affiliation:

1. Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China

Abstract

Various port cities and authorities have established emission control areas (ECAs) to constrain ships’ fuel usage in a specified offshore geographical range. However, these ECA policies involve high costs and have low monitoring and regulation enforcement efficiencies. In this study, a meeting model was used to investigate the drone-scheduling problem by considering the simultaneous movements of drones and ships. Set-covering integer linear programs were developed to formulate the assignments of drones to ships, and a model and solution algorithm were devised to determine the moving times and meeting positions for particular drones and ships. The proposed models and algorithms were employed and verified in experiments. The flying times for the datasets with three drone base stations were shorter than those with two. More drones resulted in shorter flying distances. The use of the meeting model enabled the acquirement of shorter flying times and distances than when it was not used. The datasets with more ships had longer flying times and distances, with almost linear relationships. The sensitivity of the effect of varying 5% of the ships’ speeds on the flying time metrics was less than 1%, affecting the flying distance by about 4–5%. Accelerating the drones was more effective towards optimizing the drones’ flying distances than times. Numerical studies showed that the consideration of simultaneous movements in the model allowed for a reduction in the drones’ flying distances and increased efficiency. Based on the modeling and experimental studies, managerial implications and possible extensions are discussed.

Funder

the National Social Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3