Ship Emission Measurements Using Multirotor Unmanned Aerial Vehicles: Review

Author:

Šaparnis Lukas1,Rapalis Paulius1ORCID,Daukšys Vygintas1ORCID

Affiliation:

1. Waterborne Transport and Air Pollution Laboratory, Marine Research Institute, Klaipėda University, 92294 Klaipėda, Lithuania

Abstract

This review investigates the ship emission measurements using multirotor unmanned aerial vehicles (UAVs). The monitoring of emissions from shipping is a priority globally, because of the necessity to reduce air pollution and greenhouse gas emissions. Moreover, there is widespread global effort to extensively measure vessel fuel sulfur content (FSC). The majority of studies indicate that more commonly used methods for measuring ship emission with UAVs is the sniffing method. Most of the research is concerned with determining the fuel sulfur content. Fuel sulfur content can be determined by the ratio of CO2 and SO2 concentration in the exhaust gas plume. For CO2, the non-dispersive infrared (NDIR) method is used, the most common measuring range reaches 0–2000 ppm, the overall measuring range 0–10,000 ppm, and detection accuracy is ±5–300 ppm. For SO2, the electrochemical (EC) method is used, the measuring range reaches 0–100 ppm, and the detection accuracy is ±5 ppm. Common UAV characteristics, used in measurement with ships, involve the following: 8–10 m/s of wind resistance, 5–6 kg maximum payload, and a flight distance ranging from 5 to 10 km. This can change in the near future, since a variety of emission measuring devices that can be mounted on UAVs are available on the market. The range of available elements differs from device to device, but available ranges are allowed and the accuracy provides good possibilities for wider research into ship emissions.

Funder

Lithuanian Research Council and the Ministry of Education, Science and Sports of the Republic of Lithuania

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3