A Multi-Subsampling Self-Attention Network for Unmanned Aerial Vehicle-to-Ground Automatic Modulation Recognition System

Author:

Shen Yongjian1,Yuan Hao2,Zhang Pengyu2,Li Yuheng2,Cai Minkang2,Li Jingwen1

Affiliation:

1. Beijing University of Aeronautics and Astronautics, Beijing 100191, China

2. Beijing Research Institute of Telemetry, Beijing 100076, China

Abstract

In this paper, we investigate the deep learning applications of radio automatic modulation recognition (AMR) applications in unmanned aerial vehicle (UAV)-to-ground AMR systems. The integration of deep learning in a UAV-aided signal processing terminal can recognize the modulation mode without the provision of parameters. However, the layers used in current models have a small data processing range, and their low noise resistance is another disadvantage. Most importantly, large numbers of parameters and high amounts of computation will burden terminals in the system. We propose a multi-subsampling self-attention (MSSA) network for UAV-to-ground AMR systems, for which we devise a residual dilated module containing ordinary and dilated convolution to expand the data processing range, followed by a self-attention module to improve the classification, even in the presence of noise interference. We subsample the signals to reduce the number of parameters and amount of calculation. We also propose three model sizes, namely large, medium, and small, and the smaller the model, the more suitable it will be for UAV-to-ground AMR systems. We conduct ablation experiments with state-of-the-art and baseline models on the common AMR and radio machine learning (RML) 2018.01a datasets. The proposed method achieves the highest accuracy of 97.00% at a 30 dB signal-to-noise ratio (SNR). The weight file of the small MSSA is only 642 KB.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3