MobileRaT: A Lightweight Radio Transformer Method for Automatic Modulation Classification in Drone Communication Systems

Author:

Zheng Qinghe1ORCID,Tian Xinyu1,Yu Zhiguo1,Ding Yao2ORCID,Elhanashi Abdussalam3ORCID,Saponara Sergio3,Kpalma Kidiyo4ORCID

Affiliation:

1. School of Intelligent Engineering, Shandong Management University, Jinan 250357, China

2. Key Laboratory of Optical Engineering, Xi’an Research Institute of High Technology, Xi’an 710025, China

3. Department of Information Engineering, University of Pisa, 56122 Pisa, Italy

4. Department of Electronics and Industrial Informatics, National Institute for Applied Sciences of Rennes, F-35000 Rennes, France

Abstract

Nowadays, automatic modulation classification (AMC) has become a key component of next-generation drone communication systems, which are crucial for improving communication efficiency in non-cooperative environments. The contradiction between the accuracy and efficiency of current methods hinders the practical application of AMC in drone communication systems. In this paper, we propose a real-time AMC method based on the lightweight mobile radio transformer (MobileRaT). The constructed radio transformer is trained iteratively, accompanied by pruning redundant weights based on information entropy, so it can learn robust modulation knowledge from multimodal signal representations for the AMC task. To the best of our knowledge, this is the first attempt in which the pruning technique and a lightweight transformer model are integrated and applied to processing temporal signals, ensuring AMC accuracy while also improving its inference efficiency. Finally, the experimental results—by comparing MobileRaT with a series of state-of-the-art methods based on two public datasets—have verified its superiority. Two models, MobileRaT-A and MobileRaT-B, were used to process RadioML 2018.01A and RadioML 2016.10A to achieve average AMC accuracies of 65.9% and 62.3% and the highest AMC accuracies of 98.4% and 99.2% at +18 dB and +14 dB, respectively. Ablation studies were conducted to demonstrate the robustness of MobileRaT to hyper-parameters and signal representations. All the experimental results indicate the adaptability of MobileRaT to communication conditions and that MobileRaT can be deployed on the receivers of drones to achieve air-to-air and air-to-ground cognitive communication in less demanding communication scenarios.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3