Modified Siamese Network Based on Feature Enhancement and Dynamic Template for Low-Light Object Tracking in UAV Videos

Author:

Sun Lifan12,Kong Shuaibing1,Yang Zhe3,Gao Dan1,Fan Bo1

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Longmen Laboratory, Luoyang 471000, China

3. Xiaomi Technology Co., Ltd., Beijing 100102, China

Abstract

Unmanned aerial vehicles (UAVs) visual object tracking under low-light conditions serves as a crucial component for applications, such as night surveillance, indoor searches, night combat, and all-weather tracking. However, the majority of the existing tracking algorithms are designed for optimal lighting conditions. In low-light environments, images captured by UAV typically exhibit reduced contrast, brightness, and a signal-to-noise ratio, which hampers the extraction of target features. Moreover, the target’s appearance in low-light UAV video sequences often changes rapidly, rendering traditional fixed template tracking mechanisms inadequate, and resulting in poor tracker accuracy and robustness. This study introduces a low-light UAV object tracking algorithm (SiamLT) that leverages image feature enhancement and a dynamic template-updating Siamese network. Initially, the algorithm employs an iterative noise filtering framework-enhanced low-light enhancer to boost the features of low-light images prior to feature extraction. This ensures that the extracted features possess more critical target characteristics and minimal background interference information. Subsequently, the fixed template tracking mechanism, which lacks adaptability, is enhanced by dynamically updating the tracking template through the fusion of the reference and base templates. This improves the algorithm’s capacity to address challenges associated with feature changes. Furthermore, the Average Peak-to-Correlation Energy (APCE) is utilized to filter the templates, mitigating interference from low-quality templates. Performance tests were conducted on various low-light UAV video datasets, including UAVDark135, UAVDark70, DarkTrack2021, NAT2021, and NAT2021L. The experimental outcomes substantiate the efficacy of the proposed algorithm in low-light UAV object-tracking tasks.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Natural Science Foundation of Henan Province, China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UAV Target Tracking Algorithm Based on Illumination Adaptation and Future Awareness in Low Illumination Scenes;International Journal of Pattern Recognition and Artificial Intelligence;2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3