Tassel-YOLO: A New High-Precision and Real-Time Method for Maize Tassel Detection and Counting Based on UAV Aerial Images

Author:

Pu Hongli1ORCID,Chen Xian1ORCID,Yang Yiyu1,Tang Rong1,Luo Jinwen1,Wang Yuchao23,Mu Jiong134

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China

2. College of Mechatronics, Sichuan Agricultural University, Ya’an 625000, China

3. Sichuan Key Laboratory of Agricultural Information Engineering, Ya’an 625000, China

4. Ya’an Digital Agricultural Engineering Technology Research Center, Ya’an 625000, China

Abstract

Tassel is an important part of the maize plant. The automatic detection and counting of tassels using unmanned aerial vehicle (UAV) imagery can promote the development of intelligent maize planting. However, the actual maize field situation is complex, and the speed and accuracy of the existing algorithms are difficult to meet the needs of real-time detection. To solve this problem, this study constructed a large high-quality maize tassel dataset, which contains information from more than 40,000 tassel images at the tasseling stage. Using YOLOv7 as the original model, a Tassel-YOLO model for the task of maize tassel detection is proposed. Our model adds a global attention mechanism, adopts GSConv convolution and a VoVGSCSP module in the neck part, and improves the loss function to a SIoU loss function. For the tassel detection task, the mAP@0.5 of Tassel-YOLO reaches 96.14%, with an average prediction time of 13.5 ms. Compared with YOLOv7, the model parameters and computation cost are reduced by 4.11 M and 11.4 G, respectively. The counting accuracy has been improved to 97.55%. Experimental results show that the overall performance of Tassel-YOLO is better than other mainstream object detection algorithms. Therefore, Tassel-YOLO represents an effective exploration of the YOLO network architecture, as it satisfactorily meets the requirements of real-time detection and presents a novel solution for maize tassel detection based on UAV aerial images.

Funder

the Key Technology Research Project of the Sichuan Science and Technology Department

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3