Multi-Altitude Corn Tassel Detection and Counting Based on UAV RGB Imagery and Deep Learning

Author:

Niu Shanwei1,Nie Zhigang12,Li Guang3,Zhu Wenyu4

Affiliation:

1. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

2. Key Laboratory of Opto-Technology and Intelligent Control, Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China

3. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China

4. Intelligent Sensing and Control Laboratory, Shandong University of Petrochemical Technology, Dongying 257000, China

Abstract

In the context of rapidly advancing agricultural technology, precise and efficient methods for crop detection and counting play a crucial role in enhancing productivity and efficiency in crop management. Monitoring corn tassels is key to assessing plant characteristics, tracking plant health, predicting yield, and addressing issues such as pests, diseases, and nutrient deficiencies promptly. This ultimately ensures robust and high-yielding corn growth. This study introduces a method for the recognition and counting of corn tassels, using RGB imagery captured by unmanned aerial vehicles (UAVs) and the YOLOv8 model. The model incorporates the Pconv local convolution module, enabling a lightweight design and rapid detection speed. The ACmix module is added to the backbone section to improve feature extraction capabilities for corn tassels. Moreover, the CTAM module is integrated into the neck section to enhance semantic information exchange between channels, allowing for precise and efficient positioning of corn tassels. To optimize the learning rate strategy, the sparrow search algorithm (SSA) is utilized. Significant improvements in recognition accuracy, detection efficiency, and robustness are observed across various UAV flight altitudes. Experimental results show that, compared to the original YOLOv8 model, the proposed model exhibits an increase in accuracy of 3.27 percentage points to 97.59% and an increase in recall of 2.85 percentage points to 94.40% at a height of 5 m. Furthermore, the model optimizes frames per second (FPS), parameters (params), and GFLOPs (giga floating point operations per second) by 7.12%, 11.5%, and 8.94%, respectively, achieving values of 40.62 FPS, 14.62 MB, and 11.21 GFLOPs. At heights of 10, 15, and 20 m, the model maintains stable accuracies of 90.36%, 88.34%, and 84.32%, respectively. This study offers technical support for the automated detection of corn tassels, advancing the intelligence and precision of agricultural production and significantly contributing to the development of modern agricultural technology.

Funder

Youth Tutor Support Fund of Gansu Agricultural University

Industrial Support Program Project of Gansu Provincial Department of Education

Leading Talent Program of Gansu Province

Central Guidance on Local Science and Technology Development Fund Reserve Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3