UAV Communication Recovery under Meteorological Conditions

Author:

Song Mengan1ORCID,Huo Yiming2ORCID,Liang Zhonghua1,Dong Xiaodai2,Lu Tao2

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710064, China

2. Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada

Abstract

Our study proposes a UAV communications recovery strategy under meteorological conditions based on a ray tracing simulation of excessive path loss in four distinct three-dimensional (3D) urban environments. We start by reviewing the air-to-ground propagation loss model under meteorological conditions, as well as the specific attenuation of rain, fog, and snow, and we propose a new expression for line-of-sight (LoS) probability. Using the two frequency bands of 28 GHz and 71 GHz, we investigate the impact of specific attenuation caused by different weather conditions and analyze the relationship between the radius of the UAV coverage area and the elevation angle. Furthermore, we investigate the effects of the rainfall rate, liquid water density, and snowfall rate on the maximum coverage area and optimal height of the UAV. Eventually, we propose a strategy that involves compensating for the maximum path loss and adjusting the UAV’s position to recover the coverage of the UAV to ground users. Our results show that rain has the greatest impact on the UAV’s coverage area and optimum height among the three types of weather conditions. For various weather conditions, relative to Region 1, the percentage reduction in the maximum coverage radius of Region 2 to Region 4 increases gradually, and the extent of each increase is approximately 10%. Moreover, after adding the compensated path loss, the coverage radius of the UAV in the four regions is restored to a value slightly larger than that before the rain. In addition, rain caused the greatest reduction in UAV coverage for suburban environments and the lowest for high-rise urban environments.

Funder

Natural Science Basic Research Project in Shaanxi Province of China

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3