Repeated UAV Observations and Digital Modeling for Surface Change Detection in Ring Structure Crater Margin in Plateau

Author:

Luo Weidong12,Gan Shu12,Yuan Xiping23,Gao Sha12,Bi Rui12ORCID,Chen Cheng12,He Wenbin12,Hu Lin12

Affiliation:

1. School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Plication Engineering Research Center of Spatial Information Surveying, Mapping Technology in Plateau and Mountainous Areas Set by Universities in Yunnan Province, Kunming 650093, China

3. Key Laboratory of Mountain Real Scene Point Cloud Data Processing and Application for Universities, West Yunnan University of Applied Sciences, Dali 671006, China

Abstract

As UAV technology has been leaping forward, small consumer-grade UAVs equipped with optical sensors are capable of easily acquiring high-resolution images, which show bright prospects in a wide variety of terrains and different fields. First, the crater rim landscape of the Dinosaur Valley ring formation located on the central Yunnan Plateau served as the object of the surface change detection experiment, and two repetitive UAV ground observations of the study area were performed at the same altitude of 180 m with DJI Phantom 4 RTK in the rainy season (P1) and the dry season (P2). Subsequently, the UAV-SfM digital three-dimensional (3D) modeling method was adopted to build digital models of the study area at two points in time, which comprised the Digital Surface Model (DSM), Digital Orthomosaic Model (DOM), and Dense Image Matching (DIM) point cloud. Lastly, a quantitative analysis of the surface changes at the pit edge was performed using the point-surface-body surface morphological characterization method based on the digital model. As indicated by the results, (1) the elevation detection of the corresponding check points of the two DSM periods yielded a maximum positive difference of 0.2650 m and a maximum negative value of −0.2279 m in the first period, as well as a maximum positive difference of 0.2470 m and a maximum negative value of −0.2589 m in the second period. (2) In the change detection of the two DOM periods, the vegetation was 9.99% higher in the wet season than in the dry season in terms of coverage, whereas the bare soil was 10.54% more covered than the wet season. (3) In general, the M3C2-PM distances of the P1 point cloud and the P2 point cloud were concentrated in the interval (−0.2,0.2), whereas the percentage of the interval (−0.1,0) accounted for 26.69% of all intervals. The numerical model of UAV-SfM was employed for comprehensive change detection analysis. As revealed by the result of the point elevation difference in the constant area, the technique can conform to the requirements of earth observation with certain accuracy. The change area suggested that the test area can be affected by natural conditions to a certain extent, such that the multi-source data can be integrated to conduct more comprehensive detection analysis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3