UAV applications to assess short-term dynamics of slow-moving landslides under dense forest cover

Author:

Ilinca ViorelORCID,Șandric IonuțORCID,Chițu ZenaidaORCID,Irimia RaduORCID,Gheuca Ion

Abstract

Abstract The paper presents a methodology to rapidly assess and map the landslide kinematics in areas with dense vegetation cover. The method uses aerial imagery collected with UAVs (Unmanned Aerial Vehicles) and their derived products obtained from the structure from motion technique. The landslide analysed in the current paper occurred in the spring of 2021 and is located in Livadea village from Curvature Subcarpathians, Romania. This landslide affected the houses in the vicinity, and people were relocated because of the risk of landslide reactivation. To mitigate the landslide consequences, a preliminary investigation based on UAV imagery and geological-geomorphological field surveys was carried out to map the active parts of the landslide and establish evacuation measures. Three UAV flights were performed between 6 May and 10 June using DJI Phantom 4 and Phantom 4 RTK UAVs (Real-Time Kinematic Unmanned Aerial Vehicles). Because it is a densely forested area, semi-automated analyses of the landslide kinematics and change detection analysis were not possible. Instead, the landslide displacement rates and the changes in terrain morphology were assessed by manually interpolating the landmarks, mostly tilted trees, collected from all three UAV flights. The results showed an average displacement of approximately 20 m across the landslides, with maximum values reaching 45 m in the transport area and minimum values below 1 m in the toe area. This approach proved quick and efficient for rapid landslide investigations in a densely forested area when fast response and measures are necessary to reduce the landslide consequences.

Funder

Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI

Ministry of Research, Innovation and Digitization

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3