A Hybrid Human-in-the-Loop Deep Reinforcement Learning Method for UAV Motion Planning for Long Trajectories with Unpredictable Obstacles

Author:

Zhang Sitong1,Li Yibing1,Ye Fang2,Geng Xiaoyu1,Zhou Zitao1,Shi Tuo3

Affiliation:

1. Key Laboratory of Advanced Marine Communication and Information Technology, The College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. National Key Laboratory of Underwater Acoustic Technology, The College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

3. School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

Abstract

Unmanned Aerial Vehicles (UAVs) can be an important component in the Internet of Things (IoT) ecosystem due to their ability to collect and transmit data from remote and hard-to-reach areas. Ensuring collision-free navigation for these UAVs is crucial in achieving this goal. However, existing UAV collision-avoidance methods face two challenges: conventional path-planning methods are energy-intensive and computationally demanding, while deep reinforcement learning (DRL)-based motion-planning methods are prone to make UAVs trapped in complex environments—especially for long trajectories with unpredictable obstacles—due to UAVs’ limited sensing ability. To address these challenges, we propose a hybrid collision-avoidance method for the real-time navigation of UAVs in complex environments with unpredictable obstacles. We firstly develop a Human-in-the-Loop DRL (HL-DRL) training module for mapless obstacle avoidance and secondly establish a global-planning module that generates a few points as waypoint guidance. Moreover, a novel goal-updating algorithm is proposed to integrate the HL-DRL training module with the global-planning module by adaptively determining the to-be-reached waypoint. The proposed method is evaluated in different simulated environments. Results demonstrate that our approach can rapidly adapt to changes in environments with short replanning time and prevent the UAV from getting stuck in maze-like environments.

Funder

National Natural Science Foundation of China

Foundation of the National Defense Key Laboratory

Heilongjiang Touyan Innovation Team Program

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3