Iterative Trajectory Planning and Resource Allocation for UAV-Assisted Emergency Communication with User Dynamics
Author:
Zhang Zhilan1, Wang Yufeng2ORCID, Luo Yizhe3, Zhang Hang1, Zhang Xiaorong1, Ding Wenrui2
Affiliation:
1. School of Electronics and Information Engineering, Beihang University, Beijing 100083, China 2. Institute of Unmanned System, Beihang University, Beijing 100083, China 3. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
Abstract
The demand for air-to-ground communication has surged in recent years, underscoring the significance of unmanned aerial vehicles (UAVs) in enhancing mobile communication, particularly in emergency scenarios due to their deployment efficiency and flexibility. In situations such as emergency cases, UAVs can function as efficient temporary aerial base stations and enhance communication quality in instances where terrestrial base stations are incapacitated. Trajectory planning and resource allocation of UAVs continue to be vital techniques, while a relatively limited number of algorithms account for the dynamics of ground users. This paper focuses on emergency communication scenarios such as earthquakes, proposing an innovative path planning and resource allocation algorithm. The algorithm leverages a multi-stage subtask iteration approach, inspired by the block coordinate descent technique, to address the challenges presented in such critical environments. In this study, we establish an air-to-ground communication model, subsequently devising a strategy for user dynamics. This is followed by the introduction of a joint scheduling process for path and resource allocation, named ISATR (iterative scheduling algorithm of trajectory and resource). This process encompasses highly interdependent decision variables, such as location, bandwidth, and power resources. For mobile ground users, we employ the cellular automata (CA) method to forecast the evacuation trajectory. This algorithm successfully maintains data communication in the emergency-stricken area and enhances the communication quality through bandwidth division and power control which varies with time. The effectiveness of our algorithm is validated by evaluating the average throughput with different parameters in various simulation conditions and by using several heuristic methods as a contrast.
Funder
National Natural Science Foundation of China
Reference43 articles.
1. Wireless communications with unmanned aerial vehicles: Opportunities and challenges;Zeng;IEEE Commun. Mag.,2016 2. A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT;Kim;IEEE Commun. Lett.,2018 3. Hasan, K.M., Suhaili, W.S., Shah Newaz, S.H., and Ahsan, M.S. (2020, January 16–17). Development of an Aircraft Type Portable Autonomous Drone for Agricultural Applications. Proceedings of the 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), Bogor, Indonesia. 4. Alsawy, A., Hicks, A., Moss, D., and Mckeever, S. (2022, January 5–7). An Image Processing Based Classifier to Support Safe Dropping for Delivery-by-Drone. Proceedings of the 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy. 5. Alrayes, F.S., Alzahrani, J.S., Alissa, K.A., Alharbi, A., Alshahrani, H., Elfaki, M.A., Yafoz, A., Mohamed, A., and Hilal, A.M. (2022). Dwarf Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones. Drones, 6.
|
|