A Drone-Powered Deep Learning Methodology for High Precision Remote Sensing in California’s Coastal Shrubs

Author:

Detka Jon1ORCID,Coyle Hayley1ORCID,Gomez Marcella1ORCID,Gilbert Gregory S.1ORCID

Affiliation:

1. Department Environmental Studies, University of California, 1156 High Street, Santa Cruz, CA 95064, USA

Abstract

Wildland conservation efforts require accurate maps of plant species distribution across large spatial scales. High-resolution species mapping is difficult in diverse, dense plant communities, where extensive ground-based surveys are labor-intensive and risk damaging sensitive flora. High-resolution satellite imagery is available at scales needed for plant community conservation across large areas, but can be cost prohibitive and lack resolution to identify species. Deep learning analysis of drone-based imagery can aid in accurate classification of plant species in these communities across large regions. This study assessed whether drone-based imagery and deep learning modeling approaches could be used to map species in complex chaparral, coastal sage scrub, and oak woodland communities. We tested the effectiveness of random forest, support vector machine, and convolutional neural network (CNN) coupled with object-based image analysis (OBIA) for mapping in diverse shrublands. Our CNN + OBIA approach outperformed random forest and support vector machine methods to accurately identify tree and shrub species, vegetation gaps, and communities, even distinguishing two congeneric shrub species with similar morphological characteristics. Similar accuracies were attained when applied to neighboring sites. This work is key to the accurate species identification and large scale mapping needed for conservation research and monitoring in chaparral and other wildland plant communities. Uncertainty in model application is associated with less common species and intermixed canopies.

Funder

Earth Future’s Frontier Fellows fellowship program

UCSC Center-Scale Seed Funding Initiative

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference67 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3