Development of a Novel Lightweight CNN Model for Classification of Human Actions in UAV-Captured Videos

Author:

Othman Nashwan Adnan12,Aydin Ilhan2ORCID

Affiliation:

1. Department of Computer Engineering, College of Engineering, Knowledge University, Erbil 44001, Iraq

2. Department of Computer Engineering, Firat University, Elazig 23200, Turkey

Abstract

There has been increased attention paid to autonomous unmanned aerial vehicles (UAVs) recently because of their usage in several fields. Human action recognition (HAR) in UAV videos plays an important role in various real-life applications. Although HAR using UAV frames has not received much attention from researchers to date, it is still a significant area that needs further study because of its relevance for the development of efficient algorithms for autonomous drone surveillance. Current deep-learning models for HAR have limitations, such as large weight parameters and slow inference speeds, which make them unsuitable for practical applications that require fast and accurate detection of unusual human actions. In response to this problem, this paper presents a new deep-learning model based on depthwise separable convolutions that has been designed to be lightweight. Other parts of the HarNet model comprised convolutional, rectified linear unit, dropout, pooling, padding, and dense blocks. The effectiveness of the model has been tested using the publicly available UCF-ARG dataset. The proposed model, called HarNet, has enhanced the rate of successful classification. Each unit of frame data was pre-processed one by one by different computer vision methods before it was incorporated into the HarNet model. The proposed model, which has a compact architecture with just 2.2 million parameters, obtained a 96.15% success rate in classification, outperforming the MobileNet, Xception, DenseNet201, Inception-ResNetV2, VGG-16, and VGG-19 models on the same dataset. The proposed model had numerous key advantages, including low complexity, a small number of parameters, and high classification performance. The outcomes of this paper showed that the model’s performance was superior to that of other models that used the UCF-ARG dataset.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3