Resource Scheduling for UAV-Assisted Failure-Prone MEC in Industrial Internet

Author:

Li Xuehua1,Fang Yu1,Pan Chunyu1,Cai Yuanxin1,Zhou Mingyu2

Affiliation:

1. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100101, China

2. Baicells Technologies Co., Ltd., Beijing 100094, China

Abstract

This paper focuses on reducing execution delays of dynamic computing tasks in UAV-assisted fault-prone mobile edge computing (FP-MEC) systems, which combine mobile edge computing (MEC) and network function virtualization (NFV) technologies. FP-MEC is suited to meet Industrial Internet (IIN) requirements such as data privacy, low latency, and low-cost industrial scalability in specific scenarios. However, the reliability of virtual network functions (VNFs) deployed on UAVs could impact system performance. Thus, this paper proposes the dynamic task scheduling optimization algorithm (DTSOA) based on deep reinforcement learning (DRL) for resource allocation design. The formulated execution delay optimization problem is described as an integer linear programming problem and it is an NP-hard problem. To overcome the intractable problem, this paper discretizes it into a series of single-time slot optimization problems. Furthermore, the experimental rigor is improved by constructing a real-time server state update system to calculate the real-time server load situation and crash probability. Theoretical analysis and experiments show that the DTSOA has better application prospects than Q-learning and the recent search method (RSM), and it is closer to the traversal search method (TSM).

Funder

Beijing Natural Science Foundation

Beijing Natural Science Foundation Haidian Original Innovation Joint Fund

Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3