Joint AP Selection and Task Offloading Based on Deep Reinforcement Learning for Urban-Micro Cell-Free UAV Network

Author:

Pan Chunyu12ORCID,Wang Jincheng12,Yue Xinwei12ORCID,Guo Linyan3ORCID,Yang Zhaohui4ORCID

Affiliation:

1. Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing Information Science and Technology University, Beijing 100101, China

2. Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100101, China

3. School of Geophysics and Information Technology, Beijing Campus, China University of Geosciences, Beijing 100083, China

4. School of Information Science and Electronic Engineering, Department of Information and Communication Engineering, Yuquan Campus, Zhejiang University, Hangzhou 310027, China

Abstract

The flexible mobility feature of unmanned aerial vehicles (UAVs) leads to frequent handovers and serious inter-cell interference problems in UAV-assisted cellular networks. Establishing a cell-free UAV (CF-UAV) network without cell boundaries effectively alleviates frequent handovers and interference problems and has been an important topic of 6G research. However, in existing CF-UAV networks, a large amount of backhaul data increases the computational pressure on the central processing unit (CPU), which also increases system delay. Meanwhile, the mobility of UAVs also leads to time-varying channel conditions. Therefore, designing dynamic resource allocation schemes with the help of edge computing can effectively alleviate this problem. Thus, aiming at partial network breakdown in an urban-micro (UMi) environment, an urban-micro CF-UAV (UMCF-UAV) network architecture is proposed in this paper. A delay minimization problem and a dynamic task offloading (DTO) strategy that jointly optimizes access point (AP) selection and task offloading is proposed to reduce system delay in this paper. Considering the coupling of various resources and the non-convex feature of the proposed problem, a dynamic resource cooperative allocation (DRCA) algorithm based on deep reinforcement learning (DRL) to flexibly deploy AP selection and task offloading of UAVs between the edge and locally is proposed to solve the problem. Simulation results show fast convergence behavior of the proposed algorithm compared with classical reinforcement learning. Decreased system delay is obtained by the proposed algorithm compared with other baseline resource allocation schemes, with the maximize improvement being 53%.

Funder

Beijing Natural Science Foundation Haidian Original Innovation Joint Fund

R&D Program of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3