2chADCNN: A Template Matching Network for Season-Changing UAV Aerial Images and Satellite Imagery

Author:

Ren Yan1ORCID,Liu Yuwei1,Huang Zhenjia1,Liu Wanquan2ORCID,Wang Weina3

Affiliation:

1. School of Artificial Intelligence, Shenyang Aerospace University, Shenyang 110136, China

2. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518107, China

3. School of Science, Jilin Institute of Chemical Technology, Jilin 132022, China

Abstract

Visual navigation based on image matching has become one of the most important research fields for UAVs to achieve autonomous navigation, because of its low cost, strong anti-jamming ability, and high performance. Currently, numerous positioning and navigation methods based on visual information have been proposed for UAV navigation. However, the appearance, shape, color, and texture of objects can change significantly due to different lighting conditions, shadows, and surface coverage during different seasons, such as vegetation cover in summer or ice and snow cover in winter. These changes pose greater challenges for feature-based image matching methods. This encouraged us to overcome the limitations of previous works, which did not consider significant seasonal changes such as snow-covered UAV aerial images, by proposing an image matching method using season-changing UAV aerial images and satellite imagery. Following the pipeline of a two-channel deep convolutional neural network, we first pre-scaled the UAV aerial images, ensuring that the UAV aerial images and satellite imagery had the same ground sampling distance. Then, we introduced attention mechanisms to provide additional supervision for both low-level local features and high-level global features, resulting in a new season-specific feature representation. The similarity between image patches was calculated using a similarity measurement layer composed of two fully connected layers. Subsequently, we conducted template matching to estimate the UAV matching position with the highest similarity. Finally, we validated our proposed method on both synthetic and real UAV aerial image datasets, and conducted direct comparisons with previous popular works. The experimental results demonstrated that our method achieved the highest matching accuracy on multi-temporal and multi-season images.

Funder

Natural Science Foundation of Liaoning Province

Science Research Fund of Liaoning Province Education Department

Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3