Optimizing Performance in Federated Person Re-Identification through Benchmark Evaluation for Blockchain-Integrated Smart UAV Delivery Systems

Author:

Dong Chengzu1,Zhou Jingwen2,An Qi1ORCID,Jiang Frank1,Chen Shiping3,Pan Lei1ORCID,Liu Xiao2ORCID

Affiliation:

1. Centre for Cyber Resilience and Trust (CREST), Deakin University, Geelong, VIC 3216, Australia

2. School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Geelong, VIC 3216, Australia

3. CSIRO, Sydney, NSW 2015, Australia

Abstract

In recent years, edge-based intelligent UAV delivery systems have attracted significant interest from both the academic and industrial sectors. One key obstacle faced by these smart UAV delivery systems is data privacy, as they rely on vast amounts of data from users and UAVs for training machine learning models for person re-identification (ReID) purposes. To tackle this issue, federated learning (FL) has been extensively adopted as a promising solution since it only involves sharing and updating model parameters with a central server, without transferring raw data. However, traditional FL still suffers from the problem of having a single point of failure. In this study, we present a performance optimization method for federated person re-identification using benchmark analysis in blockchain-powered edge-based smart UAV delivery systems. Our method integrates a decentralized FL mechanism enabled by blockchain, which eliminates the necessity for a central server and stores private data on a decentralized permissioned blockchain, thus preventing a single point of failure. We employ the person ReID application in intelligent UAV delivery systems as a representative example to drive our research and examine privacy concerns. Additionally, we introduce the Federated Re-identification Consensus (FRC) protocol to address the scalability issue of the blockchain in supporting UAV delivery systems. The efficiency of our proposed method is illustrated through experiments on energy efficiency, confirmation time, and throughput. We also explore the effects of the incentive mechanism and analyze the system’s resilience under various security attacks. This study offers valuable insights and potential solutions for addressing data privacy and security challenges in the fast-growing domain of smart UAV delivery systems.

Funder

CSIRO

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3