Affiliation:
1. Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
2. Information Technologies Institute, Centre for Research & Technology Hellas, 57001 Thessaloniki, Greece
3. Intelligent Systems Laboratory, Department of Computer Science, Neapolis University Pafos, Pafos 8042, Cyprus
Abstract
This work focuses on the efficiency improvement of grid-based Coverage Path Planning (CPP) methodologies in real-world applications with UAVs. While several sophisticated approaches are met in literature, grid-based methods are not commonly used in real-life operations. This happens mostly due to the error that is introduced during the region’s representation on the grid, a step mandatory for such methods, that can have a great negative impact on their overall coverage efficiency. A previous work on UAVs’ coverage operations for remote sensing, has introduced a novel optimization procedure for finding the optimal relative placement between the region of interest and the grid, improving the coverage and resource utilization efficiency of the generated trajectories, but still, incorporating flaws that can affect certain aspects of the method’s effectiveness. This work goes one step forward and introduces a CPP method, that provides three different ad-hoc coverage modes: the Geo-fenced Coverage Mode, the Better Coverage Mode and the Complete Coverage Mode, each incorporating features suitable for specific types of vehicles and real-world applications. For the design of the coverage trajectories, user-defined percentages of overlap (sidelap and frontlap) are taken into consideration, so that the collected data will be appropriate for applications like orthomosaicing and 3D mapping. The newly introduced modes are evaluated through simulations, using 20 publicly available benchmark regions as testbed, demonstrating their stenghts and weaknesses in terms of coverage and efficiency. The proposed method with its ad-hoc modes can handle even the most complex-shaped, concave regions with obstacles, ensuring complete coverage, no-sharp-turns, non-overlapping trajectories and strict geo-fencing. The achieved results demonstrate that the common issues encountered in grid-based methods can be overcome by considering the appropriate parameters, so that such methods can provide robust solutions in the CPP domain.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献