A Lightweight Traffic Lights Detection and Recognition Method for Mobile Platform

Author:

Wang Xiaoyuan12ORCID,Han Junyan1ORCID,Xiang Hui1,Wang Bin1,Wang Gang1,Shi Huili1,Chen Longfei1ORCID,Wang Quanzheng1ORCID

Affiliation:

1. College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266100, China

2. Collaborative Innovation Center for Intelligent Green Manufacturing Technology and Equipment of Shandong Province, Qingdao 266100, China

Abstract

Traffic lights detection and recognition (TLDR) is one of the necessary abilities of multi-type intelligent mobile platforms such as drones. Although previous TLDR methods have strong robustness in their recognition results, the feasibility of deployment of these methods is limited by their large model size and high requirements of computing power. In this paper, a novel lightweight TLDR method is proposed to improve its feasibility to be deployed on mobile platforms. The proposed method is a two-stage approach. In the detection stage, a novel lightweight YOLOv5s model is constructed to locate and extract the region of interest (ROI). In the recognition stage, the HSV color space is employed along with an extended twin support vector machines (TWSVMs) model to achieve the recognition of multi-type traffic lights including the arrow shapes. The dataset, collected in naturalistic driving experiments with an instrument vehicle, is utilized to train, verify, and evaluate the proposed method. The results suggest that compared with the previous YOLOv5s-based TLDR methods, the model size of the proposed lightweight TLDR method is reduced by 73.3%, and the computing power consumption of it is reduced by 79.21%. Meanwhile, the satisfied reasoning speed and recognition robustness are also achieved. The feasibility of the proposed method to be deployed on mobile platforms is verified with the Nvidia Jetson NANO platform.

Funder

Shandong Provincial Natural Science Foundation

Collaborative Innovation Center for Intelligent Green Manufacturing Technology and Equipment of Shandong Province

Qingdao Top Talent Program of Entrepreneurship and Innovation

National Key Research and Development Program

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3