Coal Mine Rock Burst and Coal and Gas Outburst Perception Alarm Method Based on Visible Light Imagery

Author:

Cheng Jijie1ORCID,Liu Yi1,Li Xiaowei1

Affiliation:

1. School of Artificial Intelligence, China University of Mining and Technology-Beijing, Beijing 100083, China

Abstract

To solve the current reliance of coal mine rock burst and coal and gas outburst detection on mainly manual methods and the problem wherein it is still difficult to ensure disaster warning required to meet the needs of coal mine safety production, a coal mine rock burst and coal and gas outburst perception alarm method based on visible light imagery is proposed. Real-time video images were collected by color cameras in key areas of underground coal mines; the occurrence of disasters was determined by noting when the black area of a video image increases greatly, when the average brightness is less than the set brightness threshold, and when the moving speed of an object resulting in a large increase in the black area is greater than the set speed threshold (V > 13 m/s); methane concentration characteristics were used to distinguish rock burst and coal and gas outburst accidents, and an alarm was created. A set of disaster-characteristic simulation devices was designed. A Φ315 mm white PVC pipe was used to simulate the roadway and background equipment; Φ10 mm rubber balls were used to replace crushed coal rocks; a color camera with a 2.8 mm focal length, 30 FPS, and 110° field angle was used for image acquisition. The results of our study show that the recognition effect is good, which verifies the feasibility and effectiveness of the method.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference37 articles.

1. Accident Analysis and Big Data and Internet of Things in Coal Mine;Sun;Ind. Mine Autom.,2015

2. Coal Mine Accident and Emergency Rescue Technology and Equipment;Sun;Ind. Mine Autom.,2016

3. Research on Coal-mine Safe Production Conception;Sun;J. China Coal Soc.,2011

4. Sun, J. (2014). Requirement and Key Technology on Mine Informationalization and Intelligent Technology. Coal Sci. Technol., 42.

5. New Technologies and New Equipment of Coal Mine Monitoring;Sun;Ind. Mine Autom.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3