A Safety-Assured Semantic Map for an Unstructured Terrain Environment towards Autonomous Engineering Vehicles

Author:

Song Shuang1,Huang Tengchao1,Li Chenyang1,Shao Guifang1ORCID,Gao Yunlong1,Zhu Qingyuan12ORCID

Affiliation:

1. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China

2. College of Transportation and Navigation, Quanzhou Normal University, Quanzhou 362000, China

Abstract

Accurate obstacle detection plays a crucial role in the creation of high-precision maps within unstructured terrain environments, as it supplies vital decision-making information for unmanned engineering vehicles. Existing works primarily focus on the semantic segmentation of terrain environments, overlooking the safety aspect of vehicle driving. This paper presents a hazardous obstacle detection framework in addition to driving safety-assured semantic information in the generated high-precision map of unstructured scenarios. The framework encompasses the following key steps. Firstly, a continuous terrain point cloud model is obtained, and a pre-processing algorithm is designed to filter noise and fill holes in the point cloud dataset. The Sobel-G operator is then utilized to establish a digital gradient model, facilitating the labeling of hazardous obstacles. Secondly, a bidirectional long short-term memory (Bi-LSTM) neural network is trained on obstacle categories. Finally, by considering the geometric driving state of the vehicle, obstacles that pose safety risks to the vehicle are accurately extracted. The proposed algorithm is validated through experiments conducted on existing datasets as well as real, unstructured terrain point clouds reconstructed by drones. The experimental results affirm the accuracy and feasibility of the proposed algorithm for obstacle information extraction in unstructured scenes.

Funder

National Natural Science Foundation of China

National key research and development program

Fujian Province Regional Development Project

Fujian Province University Industry-Academic Cooperation Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3