Early Detection of Obstacle to Optimize the Robot Path Planning

Author:

Sharma KaushlendraORCID,Swarup ChetanORCID,Pandey Saroj KumarORCID,Kumar AnkitORCID,Doriya RajeshORCID,Singh Kamred Udham,Singh TeekamORCID

Abstract

Robot path planning is one of the core issues in robotics and its application. Optimizing the route discovery becomes more important while dealing with the robot-based application. This paper proposes the concept of early detection of the obstacle present in the workspace of the robots. To early detect the obstacle, this paper proposes the concept of a snake algorithm along with the traditional path planning algorithms. The contour detection part is merged with the different path planning algorithms to optimize the robot traversing and benefit it in producing good results. Obstacle-free optimized path is one of the core requirements for robots in any application. With the help of path planning algorithms, robots are enabled to derive those paths in a specific environment. The presence of an obstacle makes it difficult for any path planning algorithms to derive a smooth path. The purpose of using the snake algorithm is to detect an obstacle early. This method not only perceives the obstacle but also catches out the complete boundary of the obstacle, it, thus, provides the details of obstacle coordinates to the path planning algorithm. Conceiving the complete periphery of obstacles can have multiple advantages in many application areas. A*, PRM, RRT, and RRT Smooth algorithms are considered along with the snake algorithm to validate our work in three different experimental scenarios: Maze, Random Obstacles, and Dense case. Path length, Time-taken, and Move count are parameters taken to observe the results. The result obtained using the snake algorithm with four path planning algorithms is analyzed and compared in detail with the core A*, PRM, RRT, and RRTS. Finally, the result obtained using the proposed methodology gives some encouraging results and also predicts the exploration of the robot’s path planning for more applications and fields.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3