Metabolome and Transcriptome Analyses Reveal Different Flavonoid Biosynthesis and Chlorophyll Metabolism Profiles between Red Leaf and Green Leaf of Eucommia ulmoides

Author:

Yang Yun,Chen Mengjiao,Liu Yaxin,Ding Huanhuan,Du Hongyan,Sun Zhiqiang,Zhu Jingle

Abstract

Flavonoids are natural antioxidants in plants that affect the color of plant tissues. Flavonoids can be divided into eight subgroups, including flavonols, anthocyanins, and proanthocyanidins. The mechanisms of flavonoid synthesis in model plants have been widely studied. However, there are a limited number of reports on the synthesis of flavonoids in the red leaf varieties of woody plants. In this study, we combined morphological observation, pigment content determination, metabolomics, and transcriptomics to investigate the metabolites and gene regulation present in the red and green leaves of Eucommia ulmoides Oliv. The results showed that the red leaves have a lower chlorophyll content and a higher anthocyanin content. Metabonomic analysis identified that the relative content of most flavonoids is up-regulated in red leaves based on UPLC-ESI-MS/MS, which included the apigenin class, quercetin class, kaempferol class, and procyanidins. Transcriptome data suggested that the differentially up-regulated genes are enriched in flavonoid and anthocyanin synthesis pathways, ABC transport, and GST pathways. The integrative analysis of the transcriptome and metabolome showed that the up-regulation of flavonoid metabolism and a high expression of chlorophyll degradation with the down-regulation of chlorophyll biosynthesis genes are detected in E. ulmoides red leaves compared with green leaves. In addition, the co-expression networks implied that cyanidin 3-5-O-diglucoside, EuDR5, EuPAL2, EuDFR11, Eu3MaT1, and EuF3′H are likely associated with the red leaf coloration of E. ulmoides. In summary, this research provided a reference for studying the mechanism of red leaf coloration in woody plants and the use of E. ulmoides red leaves as feedstock for bioactive products.

Funder

Henan Province Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3