A New Approach to Calculate the Velocity of Interdendritic Fluid Flow during Solidification Using Etched Surface Height of Actual Metal Ingot

Author:

Hou ZibingORCID,Peng Zhiqiang,Liu Qian,Guo Zhongao,Dong Hongbiao

Abstract

Macrosegregation remains one of main defects affecting metal materials properties, which is mainly caused by interdendritic fluid flow during solidifying. However, as for controlling actual specific segregation, it is still difficult to effectively measure or simulate this kind flow instead of pure fluid flow, especially in complex casting processes of high-grade materials. Herein, a new method for obtaining velocity magnitude and direction of interdendritic fluid flow during metal solidifying is proposed from boundary layer and standard deviation obtained by measuring etched surface heights of the actual ingot and using statistical principles. Taking continuous casting bloom of GCr15 bearing steel as an example, it is indicated that the calculated velocity magnitudes under different sides and superheats can be explained by process features and, hence, solidification mechanism. The velocity magnitude and fluctuation are higher on the inner curve side and under low superheat. Meanwhile, it is found that the fluctuation extent of secondary arm spacing is more relevant with interdendritic fluid flow, although its magnitude is mainly determined by the cooling rate. Moreover, on the basis of the calculated velocity directions and magnitudes, there is a positive correlation between segregation area ratio and the effective ratio between interdendritic flow velocity and growth velocity especially in the equiaxed grain zone, which corresponds with classic macrosegregation formation theory. The above findings and comparison with other results demonstrate the validity of the new approach, which can obtain the magnitude and the direction of interdendritic fluid velocity for two or three-dimensional multiscale velocity distribution by tailoring measuring length and numbers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3