A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part II, Prediction of Corrosion Damage in Operating Reactors

Author:

Macdonald Digby D.ORCID,Engelhardt George R.

Abstract

The radiolysis of water is a significant cause of corrosion damage in the primary heat transport systems (PHTSs) of water-cooled, fission nuclear power reactors (BWRs, PWRs, and CANDUs) and is projected to be a significant factor in the evolution of corrosion damage in future fusion reactors (e.g., the ITER that is currently under development). In Part I of this two-part series, we reviewed the proposed mechanisms for the radiolysis of water and demonstrate that radiolysis leads to the formation of a myriad of oxidizing and reducing species. In this Part II, we review the role that the radiolysis species play in establishing the electrochemical corrosion potential (ECP) and the development of corrosion damage due to intergranular stress corrosion cracking (IGSCC) in reactor PHTSs. We demonstrate, that the radiolytic oxidizing radiolysis products, such as O2, H2O2, HO2−, and OH, when in molar excess over reducing species (H2, H, and O22−), some of which (H2) are preferentially stripped from the coolant upon boiling in a BWR PHTS, for example, renders the coolant in many BWRs oxidizing, thereby shifting the ECP in the positive direction to a value that is more positive than the critical potential (Ecrit = −0.23 Vshe at 288 °C) for IGSCC in sensitized austenitic stainless steel (e.g., Type 304 SS). This has led to many IGSCC incidents in operating BWRs over the past five decades that has exacted a great cost on the plant operators and electricity consumers, alike. In the case of PWRs, the primary circuits are pressurized with hydrogen to give a hydrogen concentration of 10 to 50 cm3/kgH2O (0.89 to 4.46 ppm), such that no sustained boiling occurs, and the hydrogen suppresses the radiolysis of water, thereby inhibiting the formation of oxidizing radiolysis products from water. Thus, the ECP is dominated by the hydrogen electrode reaction (HER), although important deviations from the HER equilibrium potential may occur, particularly at low [H2]. In any event, the ECP is displaced to approximately −0.85 Vshe, which is below the critical potential for IGSCC in sensitized stainless steels but is also more negative than the critical potential for the hydrogen-induced cracking (HIC) of mill-annealed Alloy 600. This has led to extensive cracking of steam generator tubing and other components (e.g., control rod drive tubes, pressurizer components) in PWRs that has also exacted a high cost on operators and power consumers. Although the ITER has yet to operate, the proposed chemistry protocol for the coolant places it close to a BWR operating on Normal Water Chemistry (NWC) without boiling or, if hydrogen is added to the IBED-PHTS, close to a BWR on Hydrogen Water Chemistry (HWC). In the current ITER technology, the concentration of H2 in the IBED-PHTS is specified to be 80 ppb, which is the concentration that will be experienced in both the Plasma Flux Area (PFA) and in the Out of Plasma Flux Area (OPFA). That corresponds to 0.90 cc(STP) H2/KgH2O, compared with 20–50 cc(STP) H2/KgH2O employed in a PWR primary coolant circuit and 5.5 to 22 cc(STP) H2/KgH2O in a BWR on hydrogen water chemistry (HWC). We predict that a hydrogen concentration of 80 ppb is sufficient to reduce the ECP in the OPFA to a level (−0.324 Vshe) that is sufficient to suppress the crack growth rate (CGR) below the practical, maximum level of 10−9 cm/s (0.315 mm/a) at which SCC is considered not to be a problem in a coolant circuit but, in the PFA, the ECP is predicted to be 0.380 Vshe, which gives a calculated standard CGR of 2.7 × 10−6 cm/s. This is more than three orders in magnitude greater that the desired maximum value of 10−9 cm/s. We recommend that the HWC issue in ITER be revisited to develop a protocol that is effective in suppressing both the ECP and the CGR in the PFA to levels that permit the operation of the IBED-PHTS in accordance with the experience gained in fission reactor technology.

Publisher

MDPI AG

Subject

General Medicine

Reference82 articles.

1. A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part I, Assessment of Radiolysis Models;Macdonald;Corros. Mater. Degrad.,2022

2. Petrov, A., Macdonald, D., and Engelhardt, G. (2018, January 9–14). Assessment of Radiolysis in Tokamak Cooling Water System of ITER Fusion Reactor. Proceedings of the 21st International Conference on Water Chemistry in Nuclear Reactor Systems, San Francisco, CA, USA.

3. Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution;Stanbury;Adv. Inorg. Chem.,1989

4. Bertuch, A., Pang, J., and Macdonald, D.D. (1995, January 6–10). The Argument for Low Hydrogen and Lithium Operation in PWR Primary Circuits. Proceedings of the 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, NACE International, Breckenridge, CO, USA.

5. Effect of Electrode Potential on the Hydrogen-Induced IGSCC of Alloy 600 in an Aqueous Solution at 350 °C;Totsuka;Corrosion,1987

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3