A Critical Review of Radiolysis Issues in Water-Cooled Fission and Fusion Reactors: Part I, Assessment of Radiolysis Models

Author:

Macdonald Digby D.,Engelhardt George R.,Petrov Andrei

Abstract

A critical review is presented on modeling of the radiolysis of the coolant water in nuclear power reactors with emphasis on ITER. The review is presented in two parts: In Part I, we assess previous work in terms of compliance with important chemical principles and conclude that no model proposed to date is completely satisfactory, in this regard. Thus, some reactions that have been proposed in various radiolysis models are not elementary in nature and can be decomposed into two or more elementary reactions, some of which are already included in the models. These reactions must be removed in formulating a viable model. Furthermore, elementary reactions between species of like charge are also commonly included, but they can be discounted upon the basis of Coulombic repulsion under the prevailing conditions (T < 350 °C) and must also be removed. Likewise, it is concluded that the current state of knowledge with respect to radiolytic yields (i.e., G-values) is also unsatisfactory. More work is required to ensure that the yields used in radiolysis models are truly “primary” yields corresponding to a time scale of nanoseconds or less. This is necessary to ensure that the impact of the reactions that occur outside of the spurs (ionizing particle tracks in the medium) are not counted twice. In Part II, the authors review the use of the radiolysis models coupled with electrochemical models to predict the water chemistry, corrosion potential, crack growth rate in Type 304 SS, and accumulated damage in the coolant circuits of boiling water reactors, pressurized water reactors, and the test fusion reactor, ITER. Based on experience with fission reactors, the emphasis should be placed on the control of the electrochemical corrosion potential because it is the parameter that best describes the state of corrosion in coolant circuits.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

General Medicine

Reference292 articles.

1. Review and Assessment of Radiolysis in the TCWS IBED PHTS;Macdonald,2017

2. Hydrogen Fusion—An Opportunity for Global Leadershiphttps://usiter.org/sites/default/files/2018-06/hydrogen_fusion.pdf

3. Principal physics developments evaluated in the ITER design review

4. ITER Technical Basis,2002

5. Review of the ITER Project

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3