Abstract
Nonlinearity may cause a model deviation problem, and hence, it is a challenging problem for process monitoring. To handle this issue, local kernel principal component analysis was proposed, and it achieved a satisfactory performance in static process monitoring. For a dynamic process, the expectation value of each variable changes over time, and hence, it cannot be replaced with a constant value. As such, the local data structure in the local kernel principal component analysis is wrong, which causes the model deviation problem. In this paper, we propose a new two-step dynamic local kernel principal component analysis, which extracts the static components in the process data and then analyzes them by local kernel principal component analysis. As such, the two-step dynamic local kernel principal component analysis can handle the nonlinearity and the dynamic features simultaneously.
Funder
The Innovation Team by Department of Education of Guangdong Province, China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献