Author:
Zheng Peng,Gu Tuan,Liu Erhu,Zhao Ming,Zhou Desheng
Abstract
During hydraulic fracturing, the aperture of hydraulic fractures will shrink by the in-situ stress, but will not fully close because of the existence of proppant inside the fracture. In previous studies, few people noticed the existence of proppant, which has resulted in the inaccuracy of simulation results. In this study, based on the boundary element method, a numerical simulation model for sequential fracturing was established, which respectively considered the influence of proppant in staged fracturing and zipper fracturing. In addition, the influence mechanism of proppant on fracture morphology is then revealed. Simulation results show that the residual aperture of the previous hydraulic fracture, which was produced by proppant, may increase with the increase of proppant stiffness and fracture spacing and may also be shrunk by the dynamic propagation of subsequent hydraulic fracture. However, the residual aperture will rebound after hydraulic fracturing construction is finished. The shrinkage and rebound values of residual aperture of hydraulic fracture are usually less than 1 mm. In addition, at the same time, the residual aperture of previous hydraulic fracture may also influence the propagation of subsequent hydraulic fracture. These influences are represented by the bend of fractures in multistage fracturing and the intersection in zipper fracturing. With the increase of well spacing, the influence degree of residual aperture on subsequent fracture propagation is reduced. The previous hydraulic fracture cannot have a significant effect on the deflection of subsequent hydraulic fracture when fracture spacing is between 10 and 30 m. The above research has important guiding significance for controlling fracture morphology in hydraulic fracturing.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献