Affiliation:
1. Exploration and Development Research Institute of Liaohe Oilfield Company, PetroChina, Panjin 124010, China
2. College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
Abstract
During the hydraulic-fracturing process, stress interference occurs among multiple wells and fractures, potentially affecting the trajectory of hydraulic fracture propagation. Previous studies have largely overlooked the influence of proppant support stresses on the trajectories of fracture propagation. This paper establishes a mathematical model, grounded in the boundary element method, designed to compute the propagation of multiple fractures, considering both proppant support on the fracture surface and dynamic perturbations within the local stress field. The findings of this research reveal that the stress field induced by hydraulic fracturing exhibits dynamic evolution characteristics, necessitating a comprehensive study of the fracture initiation and extension across the entire fracturing time domain. The effect of the residual fracture width under proppant action on the in situ stress field cannot be ignored. During simultaneous fracturing, hydraulic fractures are inclined to propagate in the direction of the maximum horizontal principal stress, particularly as the in situ differential stress escalates. Staggered fracturing between wells has been proven to be more effective than head-to-head fracturing. Simply increasing the well spacing cannot solve the problem of inter-well fracture interference. In zipper fracturing, adjusting the fracturing sequence can inhibit the fracture intersections between wells, thereby controlling the trajectory of fracture propagation. The aforementioned research has considerable significance in guiding the control of fracture morphology during hydraulic-fracturing processes.
Funder
National Natural Science Foundation of China
Shaanxi Provincial Natural Science Basic Research Program Project