Paclitaxel and Myrrh oil Combination Therapy for Enhancement of Cytotoxicity against Breast Cancer; QbD Approach

Author:

Shehata Tamer M.ORCID,Elsewedy Heba S.ORCID

Abstract

Paclitaxel (PX), plant alkaloid, is a chemotherapeutic agent intended for treating a wide variety of cancers. The objective of the present study was to formulate and evaluate the anticancer activity of PX loaded into a nanocarrier, mainly PEGylated nanoemulsion (NE) fabricated with myrrh essential oil. Myrrh essential oil has been estimated previously to show respectable anticancer activity. Surface modification of the formulation with PEG-DSPE would help in avoiding phagocytosis and prolong the residence time in blood circulation. Various NE formulations were developed after operating (22) factorial design, characterized for their particle size, in vitro release, and hemolytic activity. The optimized formula was selected and compared to its naked counterpart in respect to several characterizations. Quantitative amount of protein absorbed on the formulation surfaces and in vitro release with and without serum incubation were evaluated. Ultimately, MTT assay was conducted to distinguish the anti-proliferative activity. PEGylated PX-NE showed particle size 170 nm, viscosity 2.91 cP, in vitro release 57.5%, and hemolysis 3.44%, which were suitable for intravenous administration. A lower amount of serum protein adsorbed on PEGylated PX-NE surface (16.57 µg/µmol) compared to naked counterpart (45.73 µg/µmol). In vitro release from PEGylated NE following serum incubation was not greatly affected (63.3%), in contrast to the naked counterpart (78.8%). Eventually, anti-proliferative effect was obtained for PEGylated PX-NE achieving IC50 38.66 µg/mL. The results obtained recommend PEGylated NE of myrrh essential oil as a candidate nanocarrier for passive targeting of PX.

Funder

Deanship of Scientific Research, King Faisal University, Annual funding track

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3