Relative Effect of Additional Solid Media on Bubble Hydrodynamics in Bubble Column and Airlift Reactors towards Mass Transfer Enhancement

Author:

Sastaravet Prajak,Bun SaretORCID,Wongwailikhit Kritchart,Chawaloesphonsiya Nattawin,Fujii Manabu,Painmanakul Pisut

Abstract

Many researchers have focused on multi-phase reactor development for improving mass transfer performance. However, solid particle addition in gas–liquid contactor for better oxygen mass transfer performance is still limited. Hence, this study aims to analyze the relative effect of different types of local solid media on the bubble hydrodynamic characteristics towards mass transfer enhancement in bubble columns (BCR) and airlift reactors (ALR). This was investigated by varying solid media types (ring, sphere, cylinder, and square), solid loadings (0%–15%), and superficial gas velocities (Vg) (2.6–15.3 × 10−3 m/s) in terms of the bubble hydrodynamic and oxygen mass transfer parameters. The result showed that bubble size distribution in BCR and ALR with additional plastic media was smaller than that without media addition, approximately 22%–27% and 5%–29%, respectively, due to the increase of the bubble breaking rate and the decrease of the bubble rising velocity (UB). Further, adding media in both reactors significantly decreased the UB value. Since media increased flow resistance, resulting in decreased liquid velocity, it can also be the moving bed to capture or block the bubbles from free rising. Therefore, oxygen mass transfer performance was investigated. The oxygen transfer coefficient (KLa) in BCR with solid media addition was enhanced up to 31%–56% compared to a non-addition case, while this enhancement was greater at higher solid loading due to its higher effective surface, resulting in a higher bubble break-up rate compared to the lower loading. In ALR, up to 38.5% enhanced KLa coefficient was archived after adding plastic media over the non-addition case. In conclusion, ring and cylinder media were found to be the most significant for improving KLa value in BCR and ALR, respectively, without extra energy.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3