A Review on the Current Knowledge and Prospects for the Development of Improved Detection Methods for Soil-Transmitted Helminth Ova for the Safe Reuse of Wastewater and Mitigation of Public Health Risks

Author:

Ravindran Vivek B.,Soni Sarvesh K.,Ball Andrew S.

Abstract

Climate change, increase in population and scarcity of freshwater have led to a global demand for wastewater reuse in irrigation. However, wastewater has to be treated in order to minimize the presence of pathogens, in particular, the ova of soil-transmitted helminthes (STHs). Limiting the transmission via removal of STH ova, accurate assessment of risks and minimizing the exposure to the public have been recommended by health regulators. The World Health Organization (WHO) guideline specifies a limit of ≤1 ova/L for safe wastewater reuse. Additionally, the Australian Guidelines for Water recycling (AGWR) recommend a hydraulic retention time of over 25 days in a lagoon or stabilization pond to ensure a 4 log reduction value of helminth ova and to mitigate soil-transmitted helminths associated risks to humans. However, the lack of fast and sensitive methods for assessing the concentration of STH ova in wastewater poses a considerable challenge for an accurate risk assessment. Consequently, it has been difficult to control soil-transmitted helminthiasis despite effective mass drug administration. This limitation can be overcome with the advent of novel techniques for the detection of helminth ova. Therefore, this review presents an assessment of the current methods to detect the viable ova of soil-transmitted helminths in wastewater. Furthermore, the review focuses on the perspectives for the emerging state-of-the-art research and developments that have the potential to replace currently available conventional and polymerase chain reaction based methods and achieve the guidelines of the WHO in order to allow the safe reuse of wastewater for non-potable applications, thereby minimizing public health risks.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3