Estimation of Plant Height and Aboveground Biomass of Toona sinensis under Drought Stress Using RGB-D Imaging

Author:

Liu Wenjian,Li YanjieORCID,Liu Jun,Jiang Jingmin

Abstract

Rapid and accurate plant growth and biomass estimation is essential for formulating and implementing targeted forest cultivation measures. In this study, RGB-D imaging technology was used to obtain the RGB and depth imaging data for a Toona sinensis seedling canopy to estimate plant growth and aboveground biomass (AGB). Three hundred T. sinensis seedlings from 20 varieties were planted under five different drought stress treatments. The U-Net model was applied first to achieve highly accurate segmentation of plants from complex backgrounds. Simple linear regression (SLR) was used for plant height prediction, and the other three models, including multivariate linear (ML), random forest (RF) and multilayer perceptron (MLP) regression, were applied to predict the AGB and compared for optimal model selection. The results showed that the SLR model yields promising and reliable results for the prediction of plant height, with R2 and RMSE values of 0.72 and 1.89 cm, respectively. All three regression methods perform well in the prediction of AGB estimation. MLP yields the highest accuracy in predicting dry and fresh aboveground biomass compared to the other two regression models, with R2 values of 0.77 and 0.83, respectively. The combination of Gray, Green minus red (GMR) and Excess green index (ExG) was identified as the key predictor by RReliefF for predicting dry AGB. GMR was the most important in predicting fresh AGB. This study demonstrated that the merits of RGB-D and machine learning models are effective phenotyping techniques for plant height and AGB prediction, and can be used to assist dynamic responses to drought stress for breeding selection.

Funder

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3