Steady-Speed Traffic Capacity Analysis for Autonomous and Human-Driven Vehicles

Author:

Mohammed Dilshad12ORCID,Horváth Balázs2ORCID

Affiliation:

1. Department of Civil Engineering, University of Duhok, Duhok 1006, Iraq

2. Department of Transport, Széchenyi István University, 9026 Györ, Hungary

Abstract

As the automotive industry transitions towards the era of autonomous vehicles, it is imperative to assess and compare the following distances maintained by vehicles equipped with adaptive cruise control (ACC) systems against those of traditional human-driven vehicles. This study aims to provide insights into the future use of autonomous vehicles by empirically examining the following distances achieved under different driving conditions. Controlled experiments were conducted using three vehicles equipped with various types of ACC sensors, and comparable scenarios were replicated with human drivers. The experiments involved driving at multiple constant speeds to evaluate the efficacy of ACC in maintaining safe following distances. Our findings indicate that ACC systems consistently converge on optimal following distances, demonstrating their ability to regulate spacing between vehicles effectively. However, a notable downside emerged in terms of their adverse impact on road capacities, where the results indicate a mitigation in capacity percentages of 7.6%, 9.3%, and 15.6% for the three types of ACC-equipped vehicles compared to human drivers. This study sheds light on the intricate interplay between ACC systems and human driving behaviors, emphasizing the need to consider both factors when envisioning the future of autonomous vehicles. While ACC systems provide a standardized and reliable approach to following distances, the shorter distances observed in human-driven scenarios suggest a potential trade-off between safety and traffic capacity. These insights contribute to a comprehensive understanding of the dynamics involved in autonomous driving, facilitating informed decision making for the integration of autonomous vehicles into future transportation systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3