Object Detection Performance Evaluation for Autonomous Vehicles in Sandy Weather Environments

Author:

Aloufi Nasser1,Alnori Abdulaziz1ORCID,Thayananthan Vijey1,Basuhail Abdullah1

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

In order to reach the highest level of automation, autonomous vehicles (AVs) are required to be aware of surrounding objects and detect them even in adverse weather. Detecting objects is very challenging in sandy weather due to characteristics of the environment, such as low visibility, occlusion, and changes in lighting. In this paper, we considered the You Only Look Once (YOLO) version 5 and version 7 architectures to evaluate the performance of different activation functions in sandy weather. In our experiments, we targeted three activation functions: Sigmoid Linear Unit (SiLU), Rectified Linear Unit (ReLU), and Leaky Rectified Linear Unit (LeakyReLU). The metrics used to evaluate their performance were precision, recall, and mean average precision (mAP). We used the Detection in Adverse Weather Nature (DAWN) dataset which contains various weather conditions, though we selected sandy images only. Moreover, we extended the DAWN dataset and created an augmented version of the dataset using several augmentation techniques, such as blur, saturation, brightness, darkness, noise, exposer, hue, and grayscale. Our results show that in the original DAWN dataset, YOLOv5 with the LeakyReLU activation function surpassed other architectures with respect to the reported research results in sandy weather and achieved 88% mAP. For the augmented DAWN dataset that we developed, YOLOv7 with SiLU achieved 94% mAP.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3